The Benefits of Ultrashort Optical Pulses in Optically Interconnected Systems
نویسندگان
چکیده
Many properties of an optically interconnected system can be improved through the use of a modelocked laser. The short pulse duration, high peak power, wide spectral bandwidth, and low timing jitter of such a laser lead to these benefits. Timing advantages include simplified synchronization across large chip areas, receiver latency reduction, and data resynchronization. Lower power dissipation may be achieved through improved receiver sensitivity. Additional applications of short optical pulses include time-division multiplexing, single-source wavelength-division multiplexing, and precise time-domain testing of circuits. Several of these concepts were investigated using a high-speed chip-to-chip optical interconnect demonstration link. The link employs a modelocked laser and surface-normal optoelectronic modulators that were flip-chip bonded to silicon CMOS circuits. This paper outlines experiments that were performed on or simulated for the link, and discusses the important benefits of ultrashort optical pulses for optical interconnection.
منابع مشابه
Real-Time Measurement of Ultrashort Laser Pulses Using Principal Component Generalized Projections
Frequency-resolved optical gating (FROG) is a technique to measure ultrashort laser pulses that optically constructs a spectrogram of a laser pulse. A two-dimensional (2-D) phase retrieval algorithm is used to extract the intensity and phase of a pulse from its spectrogram. We have improved a recently presented principal component generalized projections algorithm (PCGPA) making it easier to im...
متن کاملLower bound for the communication volume required for an optically interconnected array of points
The information-carrying capacity of optical fields is usually stated in terms of an area density as being related to communication through a surface. We render these well-understood results in a form such that they can be interpreted as a volume-density limit, applicable to an arbitrary array of points communicating with one another. An important example of such a situation is an optically int...
متن کاملFrequency-resolved optical gating measurement of ultrashort pulses by using single nanowire
The use of ultrashort pulses for fundamental studies and applications has been increasing rapidly in the past decades. Along with the development of ultrashort lasers, exploring new pulse diagnositic approaches with higher signal-to-noise ratio have attracted great scientific and technological interests. In this work, we demonstrate a simple technique of ultrashort pulses characterization with ...
متن کاملEmerging Optical CDMA Techniques and Applications
In this paper we present an in-depth review on the trends and the directions taken by the researchers worldwide in Optical Code Division Multiple Access (OCDMA) systems. We highlight those trends and features that are believed to be essential to the successful introduction of various OCDMA techniques in communication systems and data networks in near future. In particular we begin by giving a c...
متن کاملPhonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulat...
متن کامل